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A solution is obtained for the problem of the stretching of an anomalously viscous 
film under nonisothermal conditions. The solution is analyzed. 

One of the principal processing operations in making thin films of thermoplastic resins 
is stretching. Stretching is generally done under nonisothermal conditions (particularly 
during forming) [I]. Also, the nonisothermality may significantly affect the accuracy of 
measurements of the rheological properties of the polymers in tension. 

A detailed analysis was made in [2] of the isothermal stretching of a flat film. Thus, 
we have omitted questions related to the flow dynamics from the formulative part of the 
present work. For the force balance equations obtained in [2] to be applicable to noniso- 
thermal stretching, they must be supplemented by a thermal balance equation, and viscosity 
must accounted for in the temperature functions. 

Nonisothermal Stretching of Anomalously Viscous Film. A diagram of the stretching pro- 
cess is shown in Fig. i. The following assumptions are made: i) the thickness of the film 
is sufficiently small so that the nonuniformity of the temperature and velocity profiles in 
the transverse direction can be ignored; 2) the forces of surface tension, inertia, and fric- 
tion of the film in air can be ignored in view of their smallness compared to the stress 
acting on the material in the lengthwise direction; 3) the heat of crystallization and dissi- 
pative heat liberation can be ignored; 4) the film is cooled mainly as a result of radiation 
and convection~ 5) convective heat transfer is considerably greater in the longitudinal 
direction 3T/3x than in the transverse direction 3T/3b; 6) the thermophysical properties of 
the material are constant; 7) the flat film is subjected to uniaxial tension (stretching); 8) 
the heat-transfer coefficient is constant along the film. 

~le heat-balance equation for an element of the film b~dx has the form 

Q dT 
p C  - q. (1) 

b dx 

The q u a n t i t y  q i s  t h e  sum o f  t h e  c o n v e c t i v e  and  r a d i a n t  h e a t  f l u x e s  f rom b o t h  s i d e s  o f . t h e  
film 

q=--2=o(r--Tc)--2o*~(r~--T~), 

where ~c = (~ +~2)/2. We will also assume that cooling of the film occurs mainly in a suf- 
ficiently narrow temperature interval and that Newton's law can be applied to the radiation 
process [3]. Here, for q we may write 

q = - -  2a* ( T - -  Te), (2) 

where ~* =~c +so*~(T); @(T) is a coefficient [3]. 

Fig. i. Diagram of process of 
stretching a plane film. 
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We will use the following semiempirical expression for the material function 

n--I 

1 ] = % e x p [ ~  - - ~ - - -  T0 \ 2 } 

[4]: 

(3) 

The equality o33 =0 is valid for the stress components across the film width under con- 
ditions of uniaxial tension [2]. Expressing os3 through the strain rate, we obtain d33 -- 

d22 =0, or 

b'/b = 6'~8. (4) 

Integrating (4) with allowance for x =0, 6 =6o, and b =bo, we obtain the condition of geo- 
metric similitude of the cross sections b/bo =6/6o. 

In accordance with [2], the expression for the second invariant of the strain-rate ten- 
sor has the form 

lJ2 d~l + d 2 2 22 ~ d33, 

where dll-- Q ( b--'b + + ) "  d22-- Q6' . d33_ Qb' 
b6 ' b62 ' b26 " 

We introduce the dimensionless parameters: 

b 6 x T - - T c  
b-- ; 6 - -  ; X -  ; 0 -  - - ;  

bo 60 l To -- Tc 

v0 To 0 ( T o -  To) + To J ' ( 5 )  

where Vo = Q/bo6o i s  t h e  a x i a l  v e l o c i t y  in  t h e  i n i t i a l  s e c t i o n  o f  t he  f i l m .  The q u a n t i t y  Z(0) 
was i n t r o d u c e d  f o r  b r e v i t y  i n  w r i t i n g  t he  e x p o n e n t i a l  m u l t i p l i e r  i n  Eq. (3 ) .  

A l l o w i n g  f o r  c o n d i t i o n  (4) (and i t s  i n t e g r a l  r e s u l t ) ,  we may r e p r e s e n t  t he  e x p r e s s i o n  
f o r  the  second  i n v a r i a n t  i n  (3) i n  t h e  form o f  t he  f o l l o w i n g  dependences  on the  k i n e m a t i c  
parameters: 

1 

�9 = t ~  - l ( 6 )  

The system of equations describing the process of nonisothermal stretching of a flat 
film, with allowance for (1)-(6) and the force balance [2], has the form 

0' = - 2 Mi-~o, 

-b' = - -  PbZ (0) lb-=a , 

V' = 2PVZ (O) - l 

(7) 

(8) 

(9) 

where Mi = ~*Ibo/pCQ; P = Fl/3~oQ. The superimposed lines in (6)-(9) denote derivatives with 
respect to X. It follows from (4) that the thickness distribution in the stretching zone is 
similar to the width distribution (6 =b). Thus, the equation for ~ has been omitted from 
system (7)-(9)~ 

The initial condition for system (7)-(9) has the form: 

with X = 0 ,  9 - - b : 6  V : I .  (10) 

We can obtain the following expression for the film width from Eq. (7): 

0' , s (0') ~ -  e0" 

2 Mi0 2 l~ii0 ~ 
Substituting the resulting expressions in (8) will give us an equation describing the temper- 
ature distribution along the stretching zone 
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3 n - - 2  
I 

O" n 

o ( 5 )  2+S,o  u / = 0, 

2(1-nl ) 
w h e r e  ~ = P " (2Mi) ~ ( ~6-V~ ~ . Assuming  t h a t  

g = dO/dX, (ii) 

we obtain Bernoulli's differential equation 

1 2 ( n - - l )  

dO 0 + I 3 Z ~ ( O )  - - U -  = 0 ,  
�9 / 

2 --,,'z 

which ,  t h r o u g h  t h e  s u b s t i t u t i o n  U =Y ~ [ 5 ] ,  i s  changed  i n t o  t h e  l i n e a r  e q u a t i o n  

1 2 ( [  - - r l )  

dO n 0 - "  @ ~Z ,z (0)0 '~ = O. (12) 
n , 

A l l o w i n g  f o r  ( 1 0 ) ,  we o b t a i n  t he  f o l l o w i n g  c o n d i t i o n  f o r  Y f rom (7 ) :  w i t h  @ = 1 ,  Y=@'  = 
--2Mi.  A c c o r d i n g l y ,  f o r  U we h a v e  t h e  i n i t i a l  c o n d i t i o n :  

2 - - t~  

with O-= 1, U=- - (234  0 ~ (13) 

Solving Eq. (12) with allowance for (13) and changing to the function Y, we have 

1 

where  J ( ~ )  = ff Z ~ ~ (~) d~.. The v a r i a b l e s  ~ and ~ c o r r e s p o n d  to  t h e  d i m e n s i o n l e s s  t e m p e r a t u r e  

1 

and a r e  i n t r o d u c e d  to  e x p l a i n  the  o r d e r  o f  i n t e g r a t i o n .  With n = 2 ,  Eq. (14) i s  i n d e t e r m i -  
n a t e . , W e  f i n d  the  f u n c t i o n  Y(~) f o r  t h e  c a s e  n = 2 by  d i r e c t  i n t e g r a t i o n  o f  t h e  above  
B e r n o u l l i ' s  d i f f e r e n t i a l  e q u a t i o n ,  o b t a i n i n g  the  f o l l o w i n g  

1 

y(~) 2 M i ~ e x p [ ' ~  t" Z2 (~) d~ 1. . . . . . .  
�9 
1 

In accordance with (ii), the temperature distribution is determined by the expression 

0 

i' 1 ~ .  (15) x : , l  - 
l 

Substituting the expression for dX from (ii) into (8) and integrating with allowance 
for (10) y i e l d s  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  t he  f i l m  w i d t h  

l - - n  O 1 
2 ( I - - r t )  1 - -  

" 2 ( l - - n )  [~ - -  1] : - - P  '~ l , . g(~d~(a=/=l).  
1 

(16) 

The velocity can be determined using the relation b = i//~, which was obtained from the 
continuity equation b6V = 1 with allowance for (4). 

Analysis of the models obtained requires a substantial amount of illustrative material, 
so we will examine special cases which are also of independent interest. 

Nonisothermal Stretching of a Viscous Film. The solutions obtained are simplified some- 
what for the case of a viscous fluid (n = i). We have the following expressions in this case: 
for temperature 
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a ~5 x o ~ x 

Fig. 2 Fig. 3 

Fig. 2. Distribution of dimensionless normalized gradient of 
axial velocity V'/2P (i), width b (2), and dimensionless tem- 
perature 0 (3) along the stretching zone with different 
stretching forces P and a constant Mikheev criterion (Mi =0.5). 

Fig. 3. Distribution of dimensionless width b and velocity V 
of a plane film in the stretching zone with different stretch- 
ing ratios and flow indices: i) n=0.5; 2) 1.0; 3) 2.0. 

0 

S x =  Y(O d~, 
! 

(17) 

for film thickness and width 

0 

l n ~ = l n ~ = - - P ,  Y(_O 
1 

- -  dE, (i8) 

for velocity 

0 

l n V - ~ 2 P  5 - -  

I 

z(o 
Y (0 

for axial velocity gradient 

V l  __ 

0 

[i" d X  - -  2 P Z ( O )  exp 2P - -  

l 

j" Z([) where Y([) :: --[[21}~i ,@ PJ([)]; ]([) -~- ~---~--d[. 
] 

z(O d~] (19) 
Y (0 : ' 

Results of analysis of Eqs. (17)-(19) are shown in Fig. 2. The calculations were per- 
formed for To =523~ T c =293~ and E =64.7 kJ/mole, which corresponds to the operation of 
forming a polypropylene film [6]. It follows from Fig. 2 that flow of and heat exchange with 
the film (with n = I) is determined by two parameters: the Mikheev criterion Hi and the 
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dimensionless stretching force P. Three regimes may be distinguished from the character of 
the axial velocity gradient (see Fig. 2). 

i. The regime of "quasiisothermal" stretching. Values of P are relatively large and 
values of Mi relatively small. The axial velocity gradient increases monotonically and the 
condition V' ~ 2P is satisfied (the curves corresponding to P =i0 in Fig. 2). 

2. Intermediate regime. It is characterized by moderate values of P and Mi. The 
gradient of axial velocity has an extremum (maximum) (the curves corresponding to P =6 in 
Fig. 2). 

3) The polymer "setting" regime. It is characterized by high values of Mi and low 
values of P. The axial velocity gradient decreases monotonically and the condition V' ~ 2P 
is satisfied (curves corresponding to P =i in Fig. 2). 

In accordance with (6), the distribution of 42/2 along the stretching zone is similar 
to the distribution of V'. 

The width (thickness) of the film decreases with an increase in the stretching force P, 
but the degree of film cooling decreases also, since it is in the stretching zone for a 
shorter period of time (Fig. 2). 

The analysis shows that Mi/P= constfor a constant withdrawal rate and negligible change in P and 
Mi. In turn, this equation yields the relation F~*qo, which can be used to design automatic 
systems to regulate the stretching of plane films under nonisothermal conditions. 

A check showed that Eq. (17) satisfactorily correlates with the experimental results in 
[i, 7]. 

Nonisothermal Stretchin$ of an Anomalously Viscous Film. In the case T = const, the 
solution of Eq. (8) has the following form with allowance for (i0) 

2( 1 --n) I 1 --___n 
~ n = 1 - - 2 ( l - - n ) p - U (  V 6 v 0  ) n 

�9 n l " x (n  ~ -  I) .  ( 2 0 )  

Using the withdrawal condition X = i, b =l/A, we can exclude P from (20). Here, we have for 
the film profile 

n - - I  n 

6 = b - - [ 1 - - ( 1 - - K  " ) X]2<~-~) (n ~ 1), (21) 

where K =vl/vo. The velocity distribution is determined from the relation V = I/b 2. 

In stretching a film made of a material characterized by Newtonian properties (n = i), 
the profile is described by the expression [2] ~ =b =exp(--0.5XinK). 

The expression for the dimensionless axial-velocity gradient in the case of an anomalous- 
ly viscous fluid has the form 

n--1  i n - -1  

d V  _ n [1 " (1--K n )X] n- '  (K '~ - - 1 )  (n~al ) .  
d X  n -  1 

A c c o r d i n g l y ,  f o r  a Newtonian  f l u i d ,  V' =K X l n K .  

F i g u r e  3 shows f i l m  v e l o c i t y  and w i d t h  p r o f i l e s  w i t h  d i f f e r e n t  s t r e t c h i n g  r a t i o s  and 
f low i n d i c e s .  The d a t a  w e r e c a l c u l a t e d  w i t h  Eq. ( 2 1 ) .  I t  i s  a p p a r e n t  f rom t h e  f i g u r e  t h a t  
the flow index has a significant effect on the form of the stream. Meanwhile, an increase in 
stretching ratio is accompanied by stronger manifestation of the anomalously viscous proper- 
ties of the material. Thus, Eqs. (20) and (21) can be used to evaluate the rheological char- 
acteristics n and No. To determine n, it is sufficient to measure the initial and final width 
of the film, as well as its width in the middle part of the stream (X =0.5). The stretching 
ratio may be defined as K= (bo/bl) 2. 

It should be noted that, under stretching conditions, the flow properties of a polymeric 
material may differ significantly from the properties measured under conditions of shear 
strain [4]. 

It follows from Figs. 2 and 3 that an increase in parameter n is qualitatively equivalent 
to an increase in the Mikheev criterion or a decrease in the dimensionless stretching force 
under nonisothermal conditions. 
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General Remarks. The Mikheev criterion can be represented as the product of the Fourier 
and Biot numbers. It follows from [3] that the problem may be regarded as an external prob- 
lem when BiS0.1. Thus, the solution obtained is acceptable if a*~o/2Xs0.1. 

System (7)-(10) can be solved in finite differences (by the Runge-Kutta method) and in 
a more complete formulation (with allowance for the dependence of the thermophysical proper- 
ties on temperature, dissipative heat release, and radiation in accordance with the Stefan-- 
Boltzmann law, etc.). 

To calculate the internal integral J in (14)-(19), it is convenient to use Gauss' for- 
mula for quadratures of the highest algebraic degree of accuracy [8] 

f f(~)d~(E--1)IO,25f(1)+O,75f( 1+2~ 
! 

In  [2] was p r o p o s e d  a c h a r a c t e r i s t i c  f o r  the  ' : w i d e n i n g  v' e f f e c t  o f  the  r e c e i v i n g  beam 
K~, r e p r e s e n t i n g  the  r a t i o  o f  the  c o e f f i c i e n t s  o f  the  s econd  and f i r s t  d i f f e r e n c e s  o f  the  
no rma l  s t r e s s e s .  I n  t he  g e n e r a l  c a s e ,  K~ depends  n o t  o n l y  on t he  d i m e n s i o n s  o f  the  s t r e t c h -  
i n g  zone ( ; / b o ) ,  b u t  a l s o  on t he  Mikheev c r i t e r i o n .  For  example ,  i n  t he  " s e t t i n g  'v r eg ime  
( see  a b o v e ) ,  t h e r e  i s  a lways  u n i a x i a Z  t e n s i o n  and K~ = 0 .  Thus,  t he  method p r o p o s e d  in  [2] 
f o r  a c c o u n t i n g  f o r  the  " w i d e n i n g "  e f f e c t  o f  t he  r e c e i v i n g  beam may be a c c e p t a b l e  f o r  s t r e t c h -  
• r e g i m e s  which  a r e  c l o s e  to  i s o t h e r m a l .  

The s t r u c t u r e  o f  the  r e s u l t i n g  f i l m  i s  d e t e r m i n e d  by t he  n a t u r e  o f  the  po lymer  and i t s  
temperature-strain history in the manufacturing process. An important factor here is the 
time the polymer spends in the stretching zone. Under nonisothermal stretching conditions, 
it is determined from the relation 

or, allowing for (ii), 

l dX 
v o V ' 

0 

Vo . F (~) V 
1 

NOTATION 

bo, 6o, Vo, initial width, thickness, and velocity of film; l, length of stretching zone~ 
b, 6, v, running width, thickness, and velocity of film~ b, 6, V, dimensionless width, thick- 
ness, and velocity of film; x, X, longitudinal dimensional and dimensionless coordinates; 
To, Tc, initial temperature of film and ambient temperature; T, running temperature of film; 
~o, n, rheological constants; E, activation energy; R, universal gas constant; e, dimensional 
temperature; I2, second invariant of strain-rate tensor; Q, volumetric flow rate; p, C, X, 
density, heat capacity, and thermal conductivity of polymer; ~c, arithmetic-mean heat-trans- 
fer coefficient due to natural convection; al, a2, convective heat-transfer coefficients for 
transfer from free surfaces of film; a*, heat-transfer coefficient accounting for convection 
and radiation; ~, viscosity; ~33, component of normal stress across film width; d11, d22, d33, 
diagonal components of strain-rate tensor; Mi, Mikheev's criterion; P, dimensionless stretch- 
ing force; F, tensile force; B, parameter; Y, U, auxiliary functions: ~, ~, auxiliary vari- 
ables; J, integral, a function of temperature; K, stretching ratio; vl, withdrawal speed; K~, 
ratio of coefficients of second and first differences in normal stresses; f, arbitrary smooth 
function; ~, emissivity; ~*, Stefan--Boltzmann constant; Bi, Biot number; b~, film width at 
end of stretching zone; @(T), coefficient dependent on film temperature and ambient tempera- 
ture; q, total of convective and radiant heat fluxes from both sides of film; T, time. 

1Q 
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NONISOTHEPdIAL RETARDATION OF ELASTIC FLUIDS 

A. N. Prokunin and V. D. Sevruk UDC 532.5:532.135 

It is shown that nonisothermy during the retardation of a polymer fluid after exten- 
sion can result in diminution in specimen reduction. 

The nonisothermal effect under consideration is characteristic for elastic fluids. 
After homogeneous isothermal extension [i] of the cylindrical specimen of elastic fluid to 
a length ~ and diameter d (~>> d), the stress can drop instantaneously to zero and afford the 
possibility of reducing the specimen in time because of the elastic energy accumulated during 
extension (retardation process). There is no stress in the inertialess approximation for 
this process. The time of specimen reduction is tl ~e2. Here e2 is the retardation time, 
which is a constant of the fluid. As the temperature changes, e2~exp(E/RT) for an elastic 
polymeric fluid. Under isothermal conditions, when the temperature during retardation is 
identical as during extension, the retardation process will be homogeneous. If the tempera- 
ture of the environment changes by a jump,* say, after extension, then the retardation pro- 
cess will not be homogeneous if the specimen heating time is t2 ~d2/~ ~e2. In this case, 
tangential stresses, say, will occur during retardation because of the variable temperature 
along the specimen radius and the dependence O2(T). Hence, part of the elastic energy will 
be expended in relaxing the nonzero stresses, and specimen reduction will consequently 
diminish as compared to the isothermal case. A theoretical consideration of the problem of 
nonisothermal retardation because of its inhomogeneity is complex even in linear rheology. 
The effect discussed above is found experimentally in this paper. 

~le experiment was performed on a polyisobutylene P-20 melt with the greatest Newtonian 
viscosity ~ =1.3.106 Pa'sec, relaxation time 01 ~4"102 sec, and retardation time 82 ~80 sec. 
This polymer had been investigated earlier under homogeneous extension and retardation in 
[2, 3]. Preliminary extension of the cylindrical specimen was carried out in the constant 
strain rate mode at T =22 and 70~ The extension and retardation were performed in a water 
bath to compensate for the specimen weight and thermostatting. To accomplish the retardation 
the extended specimen was cut by knives. The retardation process was performed at both the 
extension temperatures (isothermal case) and at 22~ after extension at 70~ (nonisothermal 
case). In the latter case, not more than 5 sec elapsed in the last case in the cutting and 
transferring of the specimen from one bath (70~ to the other (22~ The specimen diameter 
changed from ~1.5 to ~ 3mmin the retardation. The time for the temperature change after the 
changeover was t2 ~d2/~ ~102 sec. The change in specimen length I r with time was observed 
visually on a ruler during retardation. 

The dependences of Ir/l on the time t obtained during retardation in the isothermal 
case for 22 and 70~ are presented in Fig. 1 (points i, 2, respectively), and for specimen 
transferral from 70 to 22~ in the nonisothermal case. In all three cases the specimen was 

*At a lower temperature the specimen is in the running state. 
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